Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

نویسنده

  • Thomas Apel
چکیده

In the first part of the paper we discuss minimal smoothness assumptions for the components of the solution decomposition which allow to prove robust convergence results in the energy norm for linear or bilinear finite elements on Shishkin meshes applied to convectiondiffusion problems with exponential boundary layers. In the corresponding derivation the standard Lagrange interpolant is used, in general. In the second part we discuss the question whether or not it is possible to use the Scott-Zhang interpolant. AMS subject classification: 65N30

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Approximation of Singularly Perturbed Reaction-Diffusion Problems by the Finite Element Method on a Shishkin Mesh

We consider the numerical approximation of singularly perturbed reaction-diffusion problems over twodimensional domains with smooth boundary. Using the h version of the finite element method over appropriately designed piecewise uniform (Shishkin) meshes, we are able to uniformly approximate the solution at a quasi-optimal rate. The results of numerical computations showing agreement with the a...

متن کامل

A two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis

Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

Superconvergent Finite Element Method on A Shishkin Mesh for Convection-Di usion Problems

In this work, the bilinear nite element method on a Shishkin mesh for convection-diiusion problems is analyzed in the two-dimensional setting. A su-perconvergent rate N ?2 ln 2 N + N ?3=2 is established on a discrete energy norm. This rate is uniformly valid with respect to the singular perturbation parameter. As a by-product, an-uniform convergence of the same order is obtained for the L 2-nor...

متن کامل

Analysis of a Streamline-Diffusion Finite Element Method on Bakhvalov-Shishkin Mesh for Singularly Perturbed Problem

Abstract. In this paper, a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection – diffusion problem is analyzed. The method is shown to be convergent uniformly in the perturbation parameter ǫ provided only that ǫ ≤ N. An O(N(lnN)) convergent rate in a discrete streamline-diffusion norm is established under certain regularity assumpti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008